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Abstract
In this study we discuss the effect of a side-connected dot in a T-shaped double quantum dot
(DQD) system under an infinitely large Coulomb interaction.

Applying the non-crossing approximation scheme to a T-shaped DQD interferometer, the
effect of a side-connected dot on the Aharonov–Bohm (AB) oscillation is discussed. The AB
oscillation in zero-bias conductance becomes large at an optimal interdot coupling. Under a
finite bias voltage, the AB phase symmetry is broken in the transmission probability and
differential conductance. The Fano interference depends on direct tunneling, temperature, and
interdot coupling, and the amplitude of the AB oscillation is affected by these factors.

1. Introduction

Recent developments in the method of fabrication of nanoscale
devices have opened up new areas of research in physics
and information science. Scientists from different fields have
devoted themselves to the study of nanostructures. Quantum
dot systems exhibit interesting electron transport phenomena
such as resonant tunneling, Coulomb blockade, and the Kondo
effect [1–5]. In such nanodevices, the capacitance is so small
that the charging energy becomes larger by a single electron.
Then the Coulomb blockade and Kondo effect play important
roles in electron conduction. In a quantum dot system, the
number of electrons in the dot is very important. When the
occupation number is even the spins of the electrons cancel
each other. However, when the occupation number is odd
an unpaired spin remains in the dot and the dot acts as a
localized magnetic impurity. At low temperatures the exchange
interaction between the electrons in the leads and the dot
becomes strong. Then the spin in the dot couples with that
of the conduction electrons in the leads to form a spin singlet
state (Kondo singlet state). This causes a Kondo peak around
the Fermi level in the density of states (DOS), and electron
conduction takes place through resonant tunneling [6, 7].

There are three types of double quantum dot (DQD)
system: serial, T-shaped, and parallel. They are classified
by the coupling between the dots and leads. The geometry
of DQD systems is shown in figure 1. In DQD systems, the
interdot coupling significantly affects the electron conduction.

Figure 1. Double quantum dot (DQD) systems. For a serial DQD
system, t (1)

R,k = t (2)

L,k = 0; for a T-shaped DQD system, t (2)

L,k = t (2)

R,k = 0;

and for a parallel DQD, t (1,2)

L,R,k �= 0.

In serial DQD systems, formation of a local singlet state and
the Kondo singlet state is competitive, causing the optimal
interdot coupling for the conductance [8]. In T-shaped DQD
systems, depending on the interdot coupling, the dependence
of the conductance on temperature varies. In the case of large
interdot coupling, the magnetic moments of the dots form
a tightly bound singlet state, and the conductance decreases
monotonically with temperature. However, in the case of small
interdot coupling, the two-stage Kondo effect results in the
non-monotonic dependence of the conductance on temperature
and magnetic field. The optimal temperature and magnetic
field for conductance appear due to the two-stage screening of
the magnetic moment of the dots [9]. On the contrary, it is
shown that the Kondo-mediated conductance is suppressed by
a Fano-like effect when the interdot coupling is small and the
energy levels of the dots are same [10].
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An Aharonov–Bohm (AB) ring is used to measure the
coherence of the electron conduction between two paths. A
quantum dot embedded in one of the arms of the AB ring
has been studied [11–15]. In this device, the differential
conductance is modified by the magnetic flux penetrating the
ring. The differential conductance is asymmetric with a dip
and a peak, which is called the Fano resonance. The Fano
resonance in the AB ring with one embedded dot is observed
experimentally [16, 17]. This reflects the interference between
the discrete energy levels of the dot and the continuum states of
the ring. The electron tunneling in an AB interferometer with
a single quantum dot and DQDs has been studied for the case
of strong electron correlation [7, 18]. At high temperatures,
the electrons tunneling via a dot are scattered by a local spin
in the dot. With a decrease in the temperature, the spins in
the dot and leads form the Kondo singlet state. As a spin
in the dot is quenched, the electron conduction via the dot
becomes coherent. Then the direct tunneling path between the
leads and the path via the dot interfere strongly, and the AB
oscillation becomes large. In addition, at low temperatures,
the AB oscillation has higher harmonic components as the
potentials of the dots deepen.

Although several studies have been carried out on AB
interferometers with double dots in parallel configuration, no
study has been carried out on T-shaped DQD interferometers.
Unlike an AB interferometer with a single dot, it is expected
that the interdot coupling causes unique variations in the
conductance under strong electron correlation. In this study,
we first consider a T-shaped DQD system under infinitely
large Coulomb interaction in the dots. We formulate the
non-crossing approximation (NCA) for the system in a
non-equilibrium state. The dependence of the differential
conductance on the interdot coupling, temperature, and energy
levels of dots is examined. Next, we apply the NCA scheme
to a T-shaped DQD interferometer. We study the effect of a
side-connected dot on the conductance, and discuss the effect
of direct tunneling, temperature, and interdot coupling on the
AB oscillation.

2. Model Hamiltonian in the limit U → ∞
We discuss the case for which the Coulomb interaction in the
dots is infinitely large. We first formulate the NCA scheme by
following the NCA schemes proposed by Pruschke and Grewe,
and Hettler et al [19, 20]. Their methods are combined to
study the DQD systems in non-equilibrium states. Although
we derive the NCA formulation for general DQD systems, we
analyze a T-shaped DQD system in the numerical calculation.

2.1. DQD systems in the absence of a magnetic field

Here, we consider DQD systems in the absence of a magnetic
field. The geometry of the systems is shown in figure 1. In the
NCA formalism, the total Hamiltonian of the system is written
as

Htotal = Hloc + Hmed, (2.1)

where

Hloc =
∑

σ

(ε1d†
1,σ d1,σ + ε2d†

2,σ d2,σ )

+
∑

σ

(tcd
†
1,σ d2,σ + H.c.)

+ U(n1,+n1,− + n2,+n2,−) (2.2)

and

Hmed =
∑

k,σ

εkc†
L,k,σ cL,k,σ +

∑

k,σ

εkc†
R,k,σ cR,k,σ

+
∑

k,σ

(t (1)
L,kc†

L,k,σ d1,σ + t (2)
L,kc†

L,k,σ d2,σ + H.c.)

+
∑

k,σ

(t (1)

R,kc†
R,k,σ d1,σ + t (2)

R,kc†
R,k,σ d2,σ + H.c.). (2.3)

Here, Hloc and Hmed are the local and medium Hamiltonians,
respectively, H.c. indicates the Hermitian conjugate, and σ

(= ±) represents the spin (up and down, respectively). c†
L(R),k,σ

and cL(R),k,σ represent the creation and annihilation operators,
respectively, of an electron with momentum k and spin σ in
the left (right) lead. d1(2),σ is the annihilation operator of an
electron with spin σ in dot 1(2). Dot 1 is connected to the
left and right leads with the tunneling amplitudes t (1)

L,k and t (1)
R,k ,

respectively. Similar notation is used for dot 2. tc indicates
the interdot coupling and U indicates the Coulomb interaction.
The number of electrons in dot i (i = 1 and 2) is defined as

ni,σ = d†
i,σ di,σ . (2.4)

In the limit U → ∞, double occupancy of electrons in
a dot is not allowed. Then, there are nine states of localized
electrons in dots 1 and 2 [10]. It is necessary to diagonalize
Hloc by using these base states. We introduce the Hubbard
operator Xmn = |m〉〈n|. Then, Hloc is written as

Hloc =
9∑

m=1

Em Xmm, (2.5)

where Em and |m〉 (m = 1, 2, . . . , 9) are the eigenenergy
and the corresponding eigenstate, respectively. Using the
eigenstate, the fermionic annihilation operator is written as

di,σ =
∑

n,m

U iσ
nm Xnm, (2.6)

where we have defined

U iσ
nm = 〈n|di,σ |m〉. (2.7)

Then, Hmed can be written using the Hubbard operator as

Hmed =
∑

k,σ

εkc†
L,k,σ cL,k,σ +

∑

k,σ

εkc†
R,k,σ cR,k,σ

+
∑

k,σ

∑

n,m

(t (1)
L,kU 1σ

nmc†
L,k,σ Xnm

+ t (2)
L,kU 2σ

nmc†
L,k,σ Xnm + H.c.)

+
∑

k,σ

∑

n,m

(t (1)
R,kU 1σ

nmc†
R,k,σ Xnm

+ t (2)
R,kU 2σ

nmc†
R,k,σ Xnm + H.c.). (2.8)
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For each |m〉, the ionic resolvent and the corresponding
local DOS are defined as

Pr
m(ω) = 1

ω − Em − �r
m(ω)

(2.9)

and

ρm(ω) = − 1

π
Im Pr

m(ω), (2.10)

respectively. The self-energy of |m〉 is given by

�r
m(ω) =

∑

n,σ

(|U 1σ
nm|2 + |U 1σ

mn|2)
(

1

π

)

×
∫ ∞

−∞
dε [�L

11 f (ε − μL) + �R
11 f (ε − μR)]Pr

n (ω + ε)

+
∑

n,σ

(|U 2σ
nm|2 + |U 2σ

mn|2)
(

1

π

)

×
∫ ∞

−∞
dε [�L

22 f (ε − μL) + �R
22 f (ε − μR)]Pr

n (ω + ε),

(2.11)

where we have neglected the vertex corrections. The linewidth
functions are

�
μ

i j (ε) = 2π
∑

k

t (i)∗
μ,k t ( j)

μ,kδ(ε − εk). (2.12)

In this study, we assume that the DOS of the leads is
constant under a wide band limit. Then, �

μ

i j (ε) is a constant
independent of ε. f (ω) is the Fermi distribution function,
f (ω) = 1

eβω+1 with β = 1/kBT . In order to solve
equation (2.11) self-consistently, we introduce a new variable:

Am(ω) = − 1

π
Im Pr

m(ω) = − 1

π
Im �r

m(ω)|Pr
m(ω)|2. (2.13)

Using this variable, equation (2.11) can be written as

Am(ω)

|Pr
m(ω)|2 =

∑

n,σ

(|U 1σ
nm|2 + |U 1σ

mn|2)
(

1

π

)

×
∫ ∞

−∞
dε [�L

11 f (ε − μL) + �R
11 f (ε − μR)]An(ω + ε)

+
∑

n,σ

(|U 2σ
nm|2 + |U 2σ

mn|2)
(

1

π

)

×
∫ ∞

−∞
dε [�L

22 f (ε − μL) + �R
22 f (ε − μR)]An(ω + ε).

(2.14)

The real part of �r
m(ω) is obtained by the Kramers–Kronig

relation,

Re �r
m(ω) = 1

π
P

∫
dε

Im �r
m(ε)

ε − ω
, (2.15)

where P denotes the Cauchy principal part. The definition of
the Green’s function between dots i and j is (sub-indices are
omitted here)

Gi j,σ (t, t ′) = −i〈TC{di,σ (t)d†
j,σ (t ′)}〉, (2.16)

where TC is the time-ordering operator along the Keldysh
contour C , which consists of the forward C− and the backward
C+ paths. Applying the usual NCA scheme, we can obtain the
retarded Green’s function as

Gr
i j,σ (ω) =

∑

n,m

U iσ
nmU jσ

nm〈〈Xnm ; Xmn〉〉ω, (2.17)

where

〈〈Xnm; Xmn〉〉ω = 1

Z loc

∫ ∞

−∞
dε e−βε [ρn(ε)Pr

m(ε + ω)

− ρm(ε)Pr
n (ε − ω)]. (2.18)

Here, the partition function

Z loc =
9∑

m=1

∫ ∞

−∞
dε e−βερm(ε). (2.19)

The spectral function between dots i and j is given by

A(d)

i j,σ (ω) = − 1

π
Im Gr

i j,σ (ω). (2.20)

In order to absorb the Boltzmann factor in the integrals of
equations (2.18) and (2.19), we introduce a new quantity given
as

am(ω) = e−βωρm(ω) = e−βω Am(ω) = i

2π
G<

m(ω), (2.21)

where G<
m(ω) is the Fourier transform of the lesser Green’s

function used in the Keldysh formalism. From equation (2.14),
am(ω) satisfies

am(ω)

|Pr
m(ω)|2 =

∑

n,σ

(|U 1σ
nm|2 + |U 1σ

mn|2)
(

1

π

)

×
∫ ∞

−∞
dε [�L

11 f (μL − ε) + �R
11 f (μR − ε)]an(ω + ε)

+
∑

n,σ

(|U 2σ
nm|2 + |U 2σ

mn|2)
(

1

π

)

×
∫ ∞

−∞
dε [�L

22 f (μL − ε) + �R
22 f (μR − ε)]an(ω + ε).

(2.22)

Finally, it is necessary to solve equations (2.14) and (2.22)
self-consistently. Using Am and am , equations (2.19)
and (2.20) can be rewritten as

Z loc =
9∑

m=1

∫ ∞

−∞
dε am(ε) (2.23)

and

A(d)
i j,σ (ω) = 1

Z loc

∑

n,m

U iσ
nmU jσ

nm

×
∫ ∞

−∞
dε [an(ε)Am(ε + ω) − am(ε)An(ε − ω)], (2.24)

respectively. The real part of Gr
i j,σ is obtained by using the

Kramers–Kronig relation as

Re Gr
i j,σ (ω) = 1

π
P

∫
dε

Im Gr
i j,σ (ε)

ε − ω
. (2.25)

3
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Figure 2. Dependence of zero-bias conductance on tc. kBT = 0.05,
ε1 = −2.0, and ε2 = −3.0.

The lesser Green’s function G<
i j,σ is obtained as

G<
i j,σ (ω) = 1

Z loc
i
∑

n,m

U iσ
nmU jσ

nm

∫
dε an(ε)Am(ε − ω).

(2.26)

The NCA conserves current, and the average current
satisfies I = IL = −IR. The current under the bias voltage is
obtained by using the equation of motion method [21]. Using
the matrix notation of G and �, the average current is written
as

I =
(

IL − IR

2

)
= e

h

∑

σ

Re
∫

Tr

[
i

2
(ΓL − ΓR)G<

σ

+ i( fLΓL − fRΓR)Gr
σ

]
dω

= ie

2h

∑

σ

∫
Tr[(ΓL − ΓR)G<

σ

+ ( fLΓL − fRΓR)(Gr
σ − Ga

σ )] dω, (2.27)

where we have defined

Γμ =
(

�
μ

11 �
μ

12

�
μ

21 �
μ

22

)
(2.28)

and

Gν
σ =

(
Gν

11,σ Gν
12,σ

Gν
21,σ Gν

22,σ

)
. (2.29)

Here, μ = L, R, and ν = <, r, a [22]. The Fermi
distribution functions of the left and right leads are defined
as fL(R)(ω) = 1

eβ(ω−μL(R) )+1
. The differential conductance

(dI/dV ) is obtained by the numerical derivative of the current
equation, equation (2.27). Thus, we have formulated the NCA
scheme for a DQD system under bias voltage. It should be
noted that the vertex correction plays an important role in
quantum coherence in serial DQD systems [23]. However, as
far as the one-particle spectral function is concerned, the vertex
correction is not so important. In T-shaped DQD systems, it is
expected that we can omit the vertex correction [10].

For the T-shaped DQD system, we choose the elements
of Γ such that �L

11 = �R
11 = �, and other elements are set to

Figure 3. Density of states of dot 1 under zero-bias voltage.
kBT = 0.05, ε1 = −2.0, and ε2 = −3.0. Solid, dotted, and dash–dot
curves represent cases tc = 0.1, 1.0, and 2.5, respectively.

zero. � = 1.0 is fixed, and all energies are scaled by �. The
values of tc, eV , and kBT are changed, and the dependence of
the conductance on these variables is studied. The bias voltage
is supplied symmetrically such that μL = −μR = eV/2. We
choose the bare energy levels as ε1 = −2.0 and ε2 = −3.0. For
these parameters, n1 ∼ n2 ∼ 1.0 under the zero-bias voltage,
and the system is in the Kondo region.

The Kondo temperature T 0
K for a single dot in the limit

U → ∞ is T 0
K ∼ D

√
�/π |ε0| exp[−π |ε0|/�]. For the

parameters D = 10.0 and ε0/� = −2.0, T 0
K ∼ 1.0 × 10−2.

For DQD systems, the effective Kondo temperature becomes
exponentially large as TK ∼ T 0

K exp[( tc
�
) tan−1( tc

�
)] [24]. For

the present parameters, the effective Kondo temperature is
TK ∼ 1.0 × 10−1. It is known that the NCA results obtained
at low temperatures are not reliable [6]. Thus, we analyze the
temperature region for which kBT � 0.05. We choose such
that the Fermi energy level is at the origin, ω = 0.

The dependence of the zero-bias conductance at kBT =
0.05 on tc is shown in figure 2. We observe that there is an
optimal tc. In DQD systems, when U � tc, the interdot
coupling causes the effective antiferromagnetic coupling J =
t2
c /U [8, 25]. Although J → 0 in the limit U → ∞, it is

expected that the Kondo singlet state competes with the local
singlet state. For a small tc, a spin in dot 1 forms the Kondo
singlet state with the conduction electrons in the leads, and the
conductance becomes large. As tc increases, the local spins in
each dot form the spin singlet state. The formation of these
two singlet states is competitive, and the formation of the spin
singlet state leads to the decrease in the conductance. On the
other hand, for a large tc, the bare energy levels ε1,2 combine to
form effective energy levels of the two dots, which are given by
ε± = 1

2 [(ε1 + ε2) ± √
(ε1 − ε2)2 + 4t2

c ] [10]. As tc increases,
when ε+ passes through the Fermi level, the DOS around the
Fermi level becomes large, and the conductance is enhanced.
However, for a significantly large tc, ε+ is located far away
from the Fermi level, and the conductance reduces [26]. The
above factors result in an optimal tc.

The DOS of dot 1 under zero-bias voltage is shown in
figure 3. It is observed that there is a sharp Kondo peak at

4
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Figure 4. Dependence of zero-bias conductance on energy levels of dots. kBT = 0.05. Curves denoted by ∗, �, and • correspond to cases
tc = 0.0, 1.5, and 2.0, respectively. (a) ε2 = −3.0 and (b) ε1 = −2.0.

ω = 0. Further, a small peak corresponding to the energy level
of dot 2 is observed for a small tc. With an increase in tc, the
width of this small peak increases and the peak shifts toward
the lower energy. For a significantly large tc, the bare energy
levels combine, and the effective energy levels ε± are formed.
For a large tc, although the Kondo peak exists around ω = 0,
it is not distinguishable because it is hindered by a large peak
at the effective energy level ε+. We can see that the large peak
in the range ω > 0 in the case of tc = 2.5 corresponds to the
effective energy level ε+ and is not the Kondo peak. It is known
that the splitting of the Coulomb peak indicates the coherence
between single-particle states, and the gap of the splitting is
given by �ε± = √

(ε1 − ε2)2 + 4t2
c [27]. Although the Kondo

peak also splits into bonding and antibonding combinations, its
energy scale is significantly smaller than that of the Coulomb
peak. The splitting of the Kondo peak indicates the quantum
coherence between the two many-body Kondo states in each
dot. In our calculation, only the splitting of the Coulomb peak
is observed, which corresponds to the formation of the bonding
and antibonding combinations of the single-particle levels ε±.

The dependence of the zero-bias conductance on the
energy levels of the dots is shown in figure 4. For a fixed
ε2 with a large tc, as |ε1| increases, the effective energy level
ε+ shifts above the Fermi level. When ε+ passes through the
Fermi level, the zero-bias conductance becomes large. As a
result, for a larger tc, the optimal |ε1|, for which the zero-bias
conductance has the maximum value, increases, as shown in
figure 4(a). A similar behavior is observed for a fixed ε1 with a
large tc.

The differential conductance for different values of tc is
shown in figure 5. The shape of the differential conductance
depends on tc. For a small tc, the differential conductance
has its maximum value at V = 0. As tc increases, the zero-
bias conductance increases and attains the maximum value
for the optimal tc. With further increase in tc, the peak at
V = 0 splits symmetrically and the differential conductance
has two maximum values at V �= 0. This behavior appears
similar to the splitting of the zero-bias anomaly in serial DQD
systems [28, 29]. It suggests that the formation of the quantum
coherence of the two many-body Kondo states in each dot

Figure 5. Differential conductance. kBT = 0.05, ε1 = −2.0, and
ε2 = −3.0. Curves denoted by ∗, �, •, and ◦ correspond to cases
tc = 0.0, 2.0, 2.25, and 2.5, respectively.

is caused by the interdot coupling. The quantum coherence
occurs at temperatures that are significantly lower than those
in our study; hence, the splitting in our calculation originates
from a different mechanism. As shown in figure 2, there
is an optimal tc(∼ 2.0) for the zero-bias conductance. For
couplings larger than the optimal tc, the energy levels of dots
combine to form ε±. A large peak corresponding to ε+, which
is located above the Fermi level in the DOS, is observed. As
ε+ shifts away from the Fermi level, the zero-bias conductance
decreases. On the contrary, the differential conductance at
the finite voltage becomes large because the second term of
equation (2.27) becomes large in the range ω > 0.

The temperature dependence of the zero-bias conductance
is shown in figure 6. For a small tc, the zero-bias conductance
increases monotonically with a decrease in the temperature.
This property is similar to that of a single-dot system. At
high temperatures, the Coulomb blockade suppresses the
conductance. As the temperature decreases, the Kondo singlet
state is formed between the electrons in the leads and dot 1, and
the conductance is enhanced. With an increase in tc (� 2.0),
the zero-bias conductance becomes large at low temperatures.

5
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Figure 6. Dependence of zero-bias conductance on temperature.
ε1 = −2.0, and ε2 = −3.0. Curves denoted by ∗, �, •, and ◦
correspond to cases tc = 0.0, 2.0, 2.5, and 2.75, respectively.

However, for a significantly large tc, the effective energy level
ε+ shifts above the Fermi level, and the DOS at the Fermi
level reduces. At low temperatures, the integral value of the
second term in equation (2.27) is small due to a small overlap
of the two functions. As a result, the zero-bias conductance
is strongly suppressed at low temperatures; however, at high
temperatures, the integral value increases. As a result, there
exists a local maximum zero-bias conductance at the optimal
temperature.

Here, we present a brief conclusion for the T-shaped DQD
system. Similar studies on T-shaped DQD systems have been
carried out [1, 10], and the dependence of conductance on tc,
the energy levels of dots, and the DOS under zero-bias voltage
have been studied. In this study, in addition to the above
mentioned investigations, we have focused on the behavior
of conductance under bias voltage at finite temperatures. We
have shown that there exists an optimal tc in the zero-bias
conductance and studied the dependence of the DOS on tc.
These properties result in an optimal bias voltage for the
differential conductance in case of a large tc. The study of
the temperature dependence of the zero-bias conductance has
shown that there exists an optimal temperature for a large tc.

In the following subsection, we study the properties of
a T-shaped DQD interferometer taking into consideration the
above mentioned results.

2.2. The AB effect in a T-shaped DQD interferometer

In this subsection we consider a T-shaped DQD system under
a magnetic field. We apply the NCA scheme formulated in the
previous subsection, and study the effect of a side-connected
dot on the conductance. The geometry of the system is shown
in figure 7: the loop made by the direct tunneling and the
tunneling via dot 1 causes the AB effect in the current. The
asymmetric coupling factor is defined as α = 4�L

11�
R
11/(�

L
11 +

�R
11)

2. We assume that the coupling between the leads and dot
1 is symmetric, i.e. α = 1.0. The total linewidth function is
� = �L

11 + �R
11. Here, we neglect the Zeeman splitting of the

energy levels.

Figure 7. T-shaped DQD interferometer. t (2)

L,k = t (2)

R,k = 0.

Under the magnetic field, HAB is introduced in addition to
Htotal, which is given as

HAB =
∑

k,k′ ,σ
(Weiφc†

R,k,σ cL,k′,σ + H.c.). (2.30)

The amplitude of the direct tunneling between the leads
is given by Weiφ . The AB phase is given by φ = 2π�/�0,
where � is the magnetic flux penetrating the ring and �0 = hc

e
is the flux quantum. As compared to the electrons passing via
dot 1, the electrons passing directly between two leads have
a phase difference of φ. The dimensionless measure of the
direct tunneling between the leads is ξ = (πνW )2, where ν is
the DOS in the leads. We choose ξ = 0.05, unless otherwise
stated. The transmission probability through a direct path is
Tr = 4ξ/(1 + ξ)2.

For the case tc = 0, the detailed derivation of current
is provided in [11, 12]. Here, we explain the derivation
briefly. The current from the left lead to dot 1, IL, is
calculated by the time evolution of the occupation number
NL = �k,σ c†

L,k,σ cL,k,σ . Using the equation of motion method
with the Keldysh formalism [21], IL is given by

IL = 2e

h

∑

σ

∫
dω Re

[∑

k

t (1)
L,k G<

1,Lk,σ (ω)

+ We−iφ
∑

k,k′
G<

Rk,Lk′ ,σ (ω)

]
, (2.31)

where G<
1,Lk,σ , and G<

Rk,Lk′ ,σ are the lesser Green’s functions
between the electrons in dot 1 and the left lead, and the
electrons in the right and left leads, respectively. The current
from the right lead to dot 1, IR, is obtained similarly. Using
the Dyson equation and the analytic continuation rules, we
calculate the non-equilibrium Green’s functions. Although the
expression for IL includes Gr

11,σ and G<
11,σ , G<

11,σ is eliminated
by making use of the conservation of total current. We finally
obtain the current as

I = e

h

∑

σ

∫
dωTσ (ω)[ fL(ω) − fR(ω)],

Tσ (ω) = [
Tr + √

αTr (1 − Tr )�̃ cos φ Re Gr
11,σ (ω)

− 1
2 [α(1 − Tr cos2 φ) − Tr ]�̃ Im Gr

11,σ (ω)
]
,

(2.32)

where Tσ (ω) is the transmission probability and �̃ = �/(1 +
ξ). We use the above equation to calculate the differential
conductance. Similarly, we obtain the current for tc �= 0.

6



J. Phys.: Condens. Matter 20 (2008) 195205 S Kawaguchi

Figure 8. Dependence of the AB oscillation in zero-bias conductance on the energy levels of dots. kBT = 0.05 and ξ = 0.05. (a) tc = 0.0 and
ε2 = −3.0. Curves denoted by ∗, �, and • correspond to cases ε1 = −2.0, −1.0, and 0.0, respectively. (b) tc = 2.0 and ε2 = −3.0. Curves
denoted by ∗, �, and • correspond to cases ε1 = −2.0, −1.0, and 0.0, respectively. (c) tc = 0.0 and ε1 = −2.0. The curve denoted by ∗ does
not depend on ε2. (d) tc = 2.0 and ε1 = −2.0. Curves denoted by ∗, �, and • correspond to cases ε2 = −3.0,−1.5, and 0.0, respectively.

Because dot 2 is not connected with the leads, it turns out that
the expression for current for the T-shaped DQD interferometer
is the same as equation (2.32). It should be noted that
Gr

11,σ must be calculated in the presence of an infinitely large
Coulomb interaction, and the effect of the direct tunneling
between the leads must be taken into consideration. For this
purpose, the following renormalized linewidth functions are
used in the NCA calculation:

�̃L
11 =

�L
11 + ξ�R

11 − 2
√

ξ�L
11�

R
11 sin φ

(1 + ξ)2
,

�̃R
11 =

�R
11 + ξ�L

11 + 2
√

ξ�L
11�

R
11 sin φ

(1 + ξ)2
.

(2.33)

The above renormalized linewidth functions were intro-
duced by Kim and Hershfield [12]. They studied a quantum
interferometer with a single dot under infinitely large Coulomb
interaction. The self-energy for an electron in the Anderson
impurity (dot 1) embedded in an effective electron continuum
band was divided into one-body and many-body contributions.
The first one corresponded to hopping into the continuum band,
and the second one corresponded to the on-site Coulomb inter-
action. In their NCA scheme, the auxiliary Green’s functions

were introduced to describe the one-body contribution. For the
lesser and greater self-energies of a quantum dot due to the
hopping into leads, the bare linewidth functions �

L,(R)

11 were
replaced by the renormalized linewidth functions �̃

L,(R)
11 . The

renormalized linewidth functions reflected the direct path be-
tween the leads, which were AB phase dependent. The NCA
calculation for our T-shaped DQD interferometer is similar to
that for their interferometer with a system with one embed-
ded dot. The difference is that the interdot coupling is taken
into consideration. We replace �L

11 and �R
11 by the renormal-

ized ones and calculate G11,σ following the NCA scheme for-
mulated in the previous subsection. Thus, the T-shaped DQD
interferometer is converted into a T-shaped DQD system with
phase-dependent linewidth functions. This causes asymmetric
couplings between dot 1 and the leads even if α = 1.0.

The parameters are almost same as those of the T-shaped
DQD system in the previous subsection. � = 1.0 is fixed
and all energies are scaled by �. The Kondo temperature is
independent of φ, as shown in the previous subsection. The
dependence of the AB oscillation on the energy levels of dots
is shown in figure 8. As shown in figure 4(a), for a fixed
ε2 with a large tc, there exists an optimal ε1 for which the
zero-bias conductance becomes maximum. When tc = 2.0,

7
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Figure 9. Dependence of the AB oscillation in zero-bias conductance on tc. kBT = 0.05, ε1 = −2.0, and ε2 = −3.0. Curves denoted by ∗, �,•, and ◦ correspond to cases tc = 0.0, 1.5, 2.0, and 2.5, respectively. (a) ξ = 0.05 (Tr = 0.18) and (b) ξ = 0.15 (Tr = 0.45).

Figure 10. Dependence of AB oscillation in zero-bias conductance on temperature. ε1 = −2.0 and ε2 = −3.0. Curves denoted by ∗, �, •,◦, and �� correspond to cases kBT = 0.05, 0.1, 0.3, 1.0, and 3.0, respectively. (a) tc = 0.0 and (b) tc = 2.0.

the zero-bias conductance is monotonically suppressed as |ε1|
decreases. These properties of the T-shaped DQD system result
in the enhancement of the amplitude of the AB oscillation in
the case of a large tc with ε1 = −2.0. On the contrary, in the
case of a large tc with ε1 = 0.0, the AB oscillation is suppressed
(compare figures 8(a) and (b)). For a fixed ε1 with a large tc,
similar behavior is observed, as shown in figures 8(c) and (d).

In the following discussion, the energy levels of the dots
are fixed at ε1 = −2.0 and ε2 = −3.0. The dependence of
the AB oscillation in the zero-bias conductance on tc is shown
in figure 9. The zero-bias conductance is oscillatory, and its
period is 2π . For a small tc, the AB oscillation is small.
However, for a large tc, the AB oscillation increases and the
zero-bias conductance is minimum at φ = 0. In the previous
subsection, the dependence of the zero-bias conductance on tc

in the absence of the magnetic field has been studied, and is
shown in figure 2. For that case, the zero-bias conductance is
determined by only Im Gr

11,σ around the Fermi level. There is
an optimal tc for the zero-bias conductance in the range 1.5 <

tc < 2.5. For the T-shaped DQD interferometer, the amplitude
of the AB oscillation becomes significantly large for tc > 1.5.
The zero-bias conductance is determined by the transmission

probability around the Fermi level by equation (2.32). This
suggests that the real and imaginary parts of the retarded
Green’s function are combined through φ. The mechanism
of the large AB oscillation for tc > 1.5 results from the
dependence of the zero-bias conductance on tc of the T-shaped
DQD system.

The dependence of the AB oscillation on temperature is
shown in figure 10. As the temperature decreases, the AB
oscillation becomes large. In particular, for tc = 2.0, the
amplitude becomes significantly large. When tc = 0, at high
temperatures a local spin in dot 1 acts as a scattering center for
the conduction electrons, which reduces the flow of electrons
via dot 1. As the temperature decreases, the spin in dot 1 forms
the Kondo singlet state with the conduction electrons in the
leads, and the electrons flow coherently via dot 1. Thus, the
AB oscillation becomes large as temperature decreases. For
optimal tc (∼2.0), the effective energy level ε+ passes through
the Fermi level, and the zero-bias conductance becomes large.
This leads to a significantly large AB oscillation. In our
calculation, the temperature is higher than the temperature in
the study that employed the numerical renormalization group
method [18]. As a result, the AB oscillation is a sinusoidal
curve, and there are no higher harmonic components.

8
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Figure 11. Transmission probability under zero-bias voltage. kBT = 0.05, ε1 = −2.0, and ε2 = −3.0. Dotted, dashed and solid curves
correspond to cases φ = 0.0, π/2, and π , respectively. (a) tc = 0.0, (b) tc = 1.0, and (c) tc = 2.0.

The transmission probability is shown in figure 11.
Although α = 1.0 in our calculations, it should be noted
that the transmission probability for the case α �= 1 is
qualitatively the same as that for α = 1 [12]. It should
be noted that each renormalized linewidth function is phase
dependent; however, the sum is independent of the phase,
(�̃L

11 + �̃R
11) = (�L

11 + �R
11)/(1 + ξ) ≡ �̃. In equilibrium,

fL = fR, and Gr
11,σ is invariant under the inversion of the

AB phase φ ↔ −φ, i.e. Gr
11,σ (φ) = Gr

11,σ (−φ). Owing
to this AB phase symmetry of Gr

11,σ and the periodicity of
the transmission probability, it is sufficient to study the phase
dependence of the transmission probability under zero-bias
voltage in the range 0 � φ � π . We observe a dip and a peak,
i.e. the Fano structure, except for the case φ = π/2, as shown
in figure 11. For a small tc, the Kondo-related peak at ω = 0
and a small peak corresponding to the bare energy level of dot
2 are observed. When φ = 0, a dip and a peak are observed
below and above the Fermi level, respectively. On the contrary,
for φ = π , a peak and a dip are observed below and above the
Fermi level, respectively. For a large tc, the Coulomb-related
peak is split into two peaks located around the effective energy
levels ε±. Although the positions of the peaks are shifted,
the Fano structure still exists. When the electron path via
dot 1 and the direct tunneling path between the leads interfere
strongly, the Fano interference is enhanced in the transmission

probability. The above condition is satisfied when tc is around
the optimal value for the zero-bias conductance and ξ (� 1.0)
is large. For this case, the AB oscillation is large, as shown in
figure 9.

The differential conductance under bias voltage and its
blow-up in a small bias region are shown as in figures 12
and 13, respectively. Under finite bias, fL �= fR, and the
AB phase symmetry in Gr

11,σ is broken, i.e. Gr
11,σ (φ) �=

Gr
11,σ (−φ). The transmission probability and the differential

conductance under the bias voltage do not have the AB phase
symmetry. The asymmetry results from the φ dependence
of the renormalized linewidth functions (equation (2.33)). It
results in asymmetric coupling under a magnetic field even
if �L

11 = �R
11. For tc = 0, the zero-bias conductance is

small and the AB phase asymmetry is weak. Around the
optimal tc, the zero-bias conductance becomes large and the
AB phase asymmetry in the differential conductance is also
enhanced (compare cases φ = π/2 and −π/2 in figure 13).
The dependence of the linewidth function on φ causes the
breakdown of the Onsager relation under finite voltage. It
is shown that when the Onsager relation is broken in non-
equilibrium, the nonlinear conductance becomes asymmetric
under a magnetic field reversal [30]. This is due to the
magnetic field dependence of the screening potential within a
mesoscopic conductor.
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Figure 12. Differential conductance for different values of tc. kBT = 0.05, ε1 = −2.0, and ε2 = −3.0. Curves denoted by ◦, ∗, �, and •
correspond to cases φ = 0, π/2, −π/2, and π , respectively. (a) tc = 0.0 and (b) tc = 2.0.

Figure 13. Blowup of differential conductance in small bias region. kBT = 0.05. Curves denoted by ◦, ∗, �, and • correspond to cases
φ = 0, π/2, −π/2, and π , respectively. (a) tc = 0.0 and (b) tc = 2.0.

3. Conclusions

We have studied the conductance of a T-shaped DQD system
under infinitely large Coulomb interaction.

First, we formulated the NCA scheme for the non-
equilibrium states and studied the properties of the T-shaped
DQD system in the absence of a magnetic field. In our
calculation, the Kondo temperature is high, and the splitting
of the Kondo peak does not appear in the DOS. The splitting of
the zero-bias anomaly in the differential conductance and the
optimal temperature in the zero-bias conductance indicate the
quantum coherence between the two many-body Kondo states
on each dot [23]. However, these are observed at significantly
low temperatures. In our calculation, the Coulomb peak splits
in the DOS as tc increases, and there is an optimal tc for the
zero-bias conductance. The existence of the optimal tc causes
the non-monotonic behavior in the differential conductance
and the temperature dependence of the zero-bias conductance.

Second, we applied the above mentioned NCA scheme
to a T-shaped DQD interferometer. In the quantum
interferometer, there is a direct tunneling path between the
leads. In order to assimilate the effect of the direct tunneling

path into the NCA scheme, we replaced the linewidth functions
with the renormalized ones. This replacement converted the T-
shaped DQD interferometer into a T-shaped DQD system with
the AB phase-dependent couplings. The zero-bias conductance
is AB phase symmetric. However, the AB phase symmetry is
broken under finite bias, and the asymmetry is enhanced as tc

increased. The AB oscillation in the zero-bias conductance is
large at the optimal tc, which is determined in the T-shaped
DQD system. The AB oscillation in the zero-bias conductance
depended on tc, temperature, and ξ . The existence of the
optimal tc is specific to the T-shaped DQD interferometer.
From the above results, we deduced the properties of the T-
shaped DQD interferometer used in the experiment; the Kondo
temperature is high, the AB oscillation becomes large at an
optimal tc, and the differential conductance is asymmetric with
respect to V = 0.
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